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1 Solution: Planck’s units (10 points)

(a) From dimensional analysis

c=[L"MT ] 1
G=[L*M~'T™? 1
h=[L*M'T '] 1
kg = [L*M'T?07"] 1
Gh= [L°M°T~?]
Gh
5 = [L*MOT°)]
Gh
Lp = 073 1.5
@ — 7037270
g = [LOMPTY]
U 1.5
Somp = a .
% = [LOM°T"]
hG
tp = CT 1.0
G Gh & fhe
P ]CBt% - ]CBCS hG G
he®
.. Tp == Gik‘QB 1.0

dmeg = [L°M'T7Q?]
he= [L*M'T~?]
CLqp = VAmeohe 1.0
2 Solution: Circumbinary planet (10 points)

Equating gravitational force to centrifugal force, we get:

47'('2 G?M@
2 b = 3
Ty day
; 5 472
ag - GM@
= q; = 2au. 2.0

The period of planet can be calculated from the 3rd Kepler’s law of motion

Tg _ 472 _ 472
ag GMZ 4GM®
= T}, = 44.7 years 2.0
1 1 1
N — = - —
YT T,
T,
ST = ﬁ = 4.4 years 2.0

One star always covers exactly the half of the planet’s surface. In the best case, the stars are located
at the maximal angular distance from each other. So the fraction of illuminated surface is simply
given by
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1 B 1 2arctan(%)
= - _— = = _—r = 053 4'0
S R R

3 Solution: Expanding ring nebula (10 points)
(a) The distance traveled by the gas particles of inner and outer radius can be calculated as follows:

Sout = de (0! Oout) = 100pc - (8.0' — 4.0') = 24 x 10% au

out

Sin = dag (0, — 6in) = 100pc - (7.0’ — 3.5") = 21 x 10 au 2.0
Sou
C Vmar = 22 = 57.0km/s
to
Sin
Umin = -~ = 50.0km/s 2.0
0

(b) At the inner edge, escape velocity from the white dwarf can be maximal (1.44Mg- Chandrasekhar
limit)

2G - 1.44M
Vese = 579 ~ 0.35km/s 2.0
Since vege K Upmin, the no-gravity scenario can be applied. YES 1.0
(c)
1.22)\
p=8 —75 =05 =30"> "=
-7
D> 1.22\ _ 1.22 x 5 x 107 x 206265 — 419mm 2.0
10) 30
Hence YES 1.0

4 Solution: Journey Between Galaxies (10 points)

(a) By the Hubble’s Law, the rate of recession is
Ad
t) = — =
v(t) =

Thus, by referring to the given relation,

Hd(t) 1.0

d(t) = Cef!t
at time t = 0, d(0) = dp = C. Thus, the distance at a time ¢:
d(t) = doe'’ 1.0

(b) It is easier to solve this problem, if we consider coordinate system that changes its scale in such
a way that distance between earth and our destination does not change (called co-moving frame).
Let v(t) be the velocity in this frame at time ¢ and let [(¢) be the total distance traveled until the
moment ¢.

’U(t)d(t) = ’Uodo

v(t) = v o ") _do
T 0d) T Vdgett
Al i

v(t) = AN —vpe~ 3.0

I(t) = f_”—;){e*m rC
for specific cases:

I(to) = %e-mo +C
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subtracting yields:

H H
thus:
U _
SolTotal = do = _Eo(e fto 1)
Rearranging,
1 Hdy
to=——In(1-=""2
T TE" ( Vo )
Thus, condition for reaching the planet at all:
Hd
1-—2>0
Vo

vo > Hdg = 70km/s

(However at this speed it will take eternity to reach it)
For vy = 1000km/s we can reach the planet, in:

to ~ 5.3 x 10'®s = 17Gyr

5 Solution: Flaring protoplanetary disk (10 points)

Surface layer .

Star Thir

Flaring disk cross-section

(a) The angle between the light beam and the horizontal plane is

91 Rﬁtan&l = @
r

Additionally, a tangent is inclined to the disc plane with an angle of

Ah(r)
Ar

9T ~ tan 9T =

An exterior angle of a triangle is equal to the sum of its two interior opposite angles. Thus,

Ah(r)  h(r)

f=0r—b= Ar T

(b) The flux from of stellar radiation at distance r from the star is E; = 4L—327 where L, is the

r

luminosity of the star. However, the irradiation flux is the normal projection of this flux onto the

infinitesimal small surface A of the disk.

Qy = E;Asinff ~ L.Ap
4mr2

From the Stefan-Boltzmann law, the cooling rate is give by

Q_ = AoTp.

2.0

1.0

1.0

1.0

1.0

2.0

1.0

1.5

0.5
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In the thermal equilibrium

LB )i

4mor?

Q+:Q=>TD=(

(c) The condition for the isothermal layer can be solved by applying

p Ar ro Ar oy
ot Q+450-1 1 e (PAr 1
B Ar r| rAr
=a(b—1)r""! o r?
= b=3

Finally, one can determine the second constant by

B=alb—1)r""t =2ar?

6 Solution: Photometry of Binary stars (20 Points)

(a) From the Wien’s displacement law the temperature of a black body is related to a peak wavelength

of emission by the relation:

Amazl =b
Ty =5978K
Ty = 4830K

_ Ah(r)  h(r) _ a(r+ Ar)? — ar® ar’

1.0

2.0

1.0

1.0
0.5
0.5

(b) Due to the diffraction minimal angular separation between two celestial objects to distinguish
them:

A
5= 1.225 =4.44 x 10~ % rad = 9.16 mas

Now let us derive the time dependence of the angular separation between two stars as seen from the
earth

reRtitits + Observer

v .—» Observer

As it is seen from the figure, distance s = [cosf, where [ is the distance between stars and 6 is
the angle of rotation of the stars about their center of mass after the stars are seen with maximum
angular separation. The angular separation seen by an observer on the earth:

S l
= — = —cosf
T

d
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38

The 38 days, during which objects are seen as a one object the system rotates by the angle 8 = 27 {75

Thus, the corresponding starting angle 6’ at which stars are no longer distinguishable:

197 _ 317

100 ~ 100

R
0 2 4

T
2

and this is the moment, when stars stop to be distinguishable. Thus, corresponding angular sepa-
ration on the sky is ¢:

l
J = 7 60 0
From which one obtains 5d
= p—y =1.45au
(¢) From the Kepler’s 3rd law:
72 _ 4723
G(MA + MB)
4723
M Mp =
A+ Mp aT?
= 40.7M

(d) From given data for case 1:

U-V)y1=U-B)1+(B-V)1=03
Uy = Uy, +ayd=6.51
Vi=U;—(U-V); =621
mpol, = V1 + BCp =6.31
Similarly for second configuration:
(U=V)a=(U-=B)2+(B—-V)2 =037
Uy = l—]o2 + ayd = 6.98

Vo= Us — (U — V) = 6.61
MBol, = Vo + BCy = 6.79

1.0

1.5

1.5

2.0

1.5

1.0
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The difference in bolometric magnitudes:

TRY 0Tt + mR40Th
(R4 — RB)T4 + RQBTJ%)
RATH + RETE

(7
(W(Ri — R%)oTh + 7TR2BO'Té>

_ ontop ((BA/RE - DTG+ Tfé)
TiR%/RE + Ty
(-0 + 7
048 = —25log |~E_ J__"a
TB + RA
Tt
Ri 1 + T;LB A B
=48 RE T4 _ 1n-0.19 _
10725 =T o m =10 = 0.65
Ti ' Rj
R, T TS R
TA 1428 06558 +0.65°4
Ry TS 7t TR
R Ty
0.35-4 =1-0.35-2
RE T
=1-0.35 x 0.482 = 0.83
CBa_ JO88
Rp 0.35
M RS
A PATA _543.0.7 = 2.56
Mp peRp
But, M4 + Mp = 40.7M,
40.7M,
Mg = 03756@ =11.4M
Mp = 29.3M,

7 Solution: Georgia to Georgia (20 points)

P
o N\ _A 90 - qb
_ / —— \\ 1
%0 fﬁz;/ Ly—=Ly |\ AN
/ P L\ N ..H.\

/. N ®A

/-
B o

In the diagram, N is the northernmost point of the path AB. Triangle APB, triangle APN and
triangle BPN are all spherical triangles. We shall use the convention that North and West are

1.5

1.0

1.0

1.0

1.0

1.0

1.0
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positive, and South and East are negative. We notice,

PN = —6p = 30°4'

PA = 90° — ¢4 = 48°17’

PB =90° - ¢
<IPNA=<PNB = 90°
IBPA=\p — A4

—_— 1
z = AB = vt = 4375 x 267(7) = 9990 km
T = m = 1.5663 rad

Rg

= 89.74° = 89°44’
In AAPN, using sine rule,

sin<gA  sin<aNV
sinPN  sin PA
) sin90°sin(30°4’)  sin(30°4’)
A= = = 0.67119
s cos P 4 cos(41°43")

oA = 0.7358 rad = 42.16° = 42°10

(Recognise that to have a northern point on the path, it must be the acute solution)

In APBA, using cosine rule,

cos PB = cos PA cos AB + sin PA sin AB cos <4
sin g = sin ¢ 4 cos T + cos ¢ 4 sin x cos A
= sin(41°43") cos(89°44") + cos(41°43’) sin(89°44") cos(42°10")
sinpp = 0.5563
.~ ¢p = 0.5900rad = 33.80° = 33°48'

(Only one solution in the valid values of latitude)

Again using cosine rule,

cos AB = cos PA cos PB + sin PA sin PB cos <P
cosT —sing sin ¢p
COS (4 COS P
c0s(89°44") — sin(41°43") sin(33°48’)
- cos(41°43") cos(33°48")
cos <P = —0.5891
o <P =2201rad = 126.13° = 126°8’
Ap = <P + \p = 126°8" — 41°48'
Ap = 1.472rad = 84.33° = 84°20/

c.cos<P =

(The other solution of Agp — A4 = —126.13° gives A\p = —167.93° which is clearly not valid)

Therefore, the coordinates of Atlanta are

(33°48/N,84°20'W))

Alternative method to find Lo
Using the spherical sine rule in triangle PBA,

sin A sin (Lg — Lq)

sin (90° — ¢») sin x

5.0

2.0

3.0

4.0

5.0

1.0



. . Theoretical Competition
International Olympiad on Solutions
Astronomy and Astrophysics 2022 Georgia Page 8 of 21

sinxsin A
sin(Le — L) = ——
- sin (L ) COS ¢g
. sin (89°51’) sin (42°10’
sosin (L — Ly) = ( o (;3045,) ) = 0.80689

Lo — L1 =126.21° (= 126°12" = 2.20rad)

o Ly =126°12 + Ly = 126°12' + (—41°48') = 84.41° (= 84°24’ = 1.47rad)
(The other solution of Ly — Ly = 53.79° gives Lo = 11.99° which is clearly not valid)
Accept all other valid solutions (such as the four parts rule or using Napier’s rules) that give ¢o =
33.71° and Ly = 84.41°. Students may do both methods for calculating Ly to confirm which solution

is common to both as a quicker check than trying to do the reverse calculation with a given pair of
co-ordinates.

8 Solution: Saturn’s Rings (20 Points)

(a) Consider small surface element (AS) of the disk. The gravitational field (AE) generated by this
surface element at at a point O located at a distance a from AS (see the figure below):

ocAS

AE =G

a2

where o is a surface density of the mass.

where « is the angle between surface normal and the vector 7 and A{2 is infinitesimal solid angle
corresponding to the area AS.

For a ring, the surface density will be given by o = M /7 (R? — r?).

As the horizontal component will get cancelled due to symmetry considerations, we only consider
the normal component:

AE, = AEcos(a) = %ASCOS(O&) = %ASL = GoAQ

By Summation, we can obtain total normal field of the surface:
EJ_ = Gof)

here  is the total solid angle subtended by the disk. In our case, when we observe disk from the
point of view of the test particle:

Q=27 (1—cosbuyt) — 27 (1 — cosb;y,)

x x
=21l — | 27 (]l - ——
< x2+R2> ( vx2+r2>

Q) =2nx —
VAR VR R
L F =GoOm
2GMmx 1 1
F| = —
R2 — 2 Va2 +r2 Vz2 + R2
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(b) In small displacement approximation:

P NQGme l_l _ 2GMm _
T R \y R) Rr(R+7) T

when the distance between the disk and the point mass is z, the distance of the center of mass of
the system from the center of the disk will be:

m
m+ M

I =

If we choose the center of mass of the system as an origin of our coordinate system, then equation
of motion of the disk will have a form:

Ma, = —kx

M
Ma1—|—km+

Ir = 0
For this simple harmonic oscillator, the period of small oscillations will be:

Rr(R+r)

T=2 _
"\ 2G(M +m)

9 Solution: Solar Retrograde Motion on Mercury (20 points)

From Kepler’s 3'4 Law, T2 = a? in units of Earth years and au respectively.

. Tatercury = \/ (0.387)% = 0.240 75 yr = 87.934 days

We know that we,, = v/r so will vary throughout the orbit (since r varies within an ellipse) whilst
Wrot 1S constant.
2m 2m

rot = = = 1.24 x 10 %rad
YT e 2 x 87.934 x 86400 rad/s

For retrograde motion, we need wot, > Wrot-
Using the vis-viva equation for the critical value of r for when wyot = wor,

’U2 GM@ 2 1
wc2)rb = ﬁ = 2 ( - > = wr20t

°GM, GMs
——F =w
73 ar?

w2

1

" 76’;\2; P4 r—2=0
® a

(1.160 x 1073%)r3 4+ (1.725 x 107"1)r —2 =0 (if 7 is in meters)

38.99r% 4 2.584r —2 =0 (if 7 is in au)

Solving the cubic equation (by any valid method) gives only one non-imaginary root
One possible way would be to use iterations for this polynomial f(r), using perihelion distance as
the starting guess.

r f(r)
0.3073 | -0.07482
0.3100 | -0.03747
0.3120 | -0.00967
0.3140 | 0.01841
0.3130 | 0.00433
0.3127 | 0.00012

s.r=0.3127au = 4.684 x 10°m

3.0

2.5

2.5

2.0

2.0

2.0

4.0

4.0
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From knowledge of ellipses, if E is the eccentric anomaly

r=a(l —ecosE)

1 1 312
- E=cos! 7<1—f) = cos ! 1—03 7
e a 0.206 0.387

E =0.3706 rad = 21.23° = 21°14’ 3.0

Using Kepler’s Equation we can find the mean anomaly, M
M =F —esin E = 0.3706 — 0.206 x sin 0.3706
= 0.2960rad = 16.96° = 16°58’ 2.0

This is relative to the perihelion, so symmetry demands that the total time the sun is in retrograde
corresponds to

AM =2M
AM 2 x 0.296
T@,Tetro = TMercuryi =87.934 x —
2 e
To retro =| 8.28days 3.0
[Accept alternative methods making use of the true anomaly e.g. with the relation cos E = 1‘1*;(?28””.

]

10 Solution: Accretion (20 Points)

(a) Consider a particle at a distance r from the center of the compact object. In case of maximal
luminosity, the gravitational force must be balanced by the radiation pressure.

mHM

- 0.5

Fa=G

CTGLE
Fr = 0.5
B= Yrer?
But, FG = FR 1.0
_ 4nGmgMc

Oe

. Lg 1.0

(b) The lower bound of its mass given by:

8 e? 2
Oe=—|——
3 \dmegmec?

~ 6.65 x 1072 m? 1.5
oeLg

- 4rGmpge

=6.04 x 10%° kg

=3.04 x 107° My, 2.5

(¢) Gravitational energy of atoms of total mass Am:

GMAm

R
AFE
Lacc - Tt

GM Am
" Lacc =

AFE =

GM .
T At & M 2.0

(d) For maximum M:
Lace = LE
GTMM _ 47TG7;’:HMC
M= (4”"”’6) R 2.0

Oe
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(e) For given value of R,:

A — (477ch) R.

Oe

M =1.14 x 10* kg/s
= 3.59 x 10% kg/yr

M = 0.018 M, /yr

(f) The total angular momentum and total mass must be conserved.

L = MyriQ+ MyriQ
Let MT = M1 + M2

and a =711 + 7o

ry = Msa and r9 = Ma
1= s 2 = s
Msa 2 Mia 2
L= |M M. Q
[ ' (MT ) T < Mr
20
= (M M2 + MyM?) 5
Mz
S = GQQMlMQ o GQQMl(MT - Ml)
T My Mr
LM
cLa = < QT>M1_O'5(MT—M1)_O'5

a=KM;"5(Mp — M;)™%

Now let us say mass of the compact object increases by small fraction AM;. Let the corresponding
increases in the separation be Aa.

a+ Aa=K(M; + AM;)™ "5 (Mg — My — AM,;)~%°

—0.5 —0.5
= KM% (Myp — My)~%° (1 + AMl) <1 _ AN )

M, Mr — M,
AM, —0.5 AM, —0.5
a—l—Aa—a(l—i— M1> 1-— A

Aa AMl AMl
14+ —=(1- 1

St < 2M1><+2M2>
AM, AM;

~1-— +

2M, 2M>
. &_ AMl Ml_M2
a2 My M,

Thus, Aa is positive (separation increases) when M; > My and the separation decreased when
My < M.

11 Solution: Dyson Sphere (50 Points)
(a) Heat absorbed must be fully emitted to maintain the thermal equilibrium
kLo = 4mR*eoTy,

kL
. Te _ 4 ©
o 47 R2%e0

(b) In this part, we try minimize the radius at the expanse of reaching the highest operational

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0
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temperature for panels. Again

kLo = 4nR%*coT!

max

[ kLo
h= decTd,

~1x 10" m = 0.665 au

Clearly, this distance is approximately 1.5 times smaller than Earth-Sun separation. Hence, Earth

will stay OUTside the sphere.
(c) Power transmitted into usable energy

P = 77L®
P=1765x102®W

(d) Energy harnessed in 1 second will be enough for

765 x 102 W x 1s

=45x%x102s~~ 14
TAEEAT 5x 10'2g 3000 yr

(e) New equilibrium temperature may be found as

2
TRE

2 4
kLg 47”% =4rRg 0T,

new

[ kLo
16moa3,
T,ow ~ 206 K
AT =288 — 206 = 82K

Thew =

(f) By Kepler’s Third Law
- 472
- GM;
. T = (0.665)"5yr

T ~ 0.542yr = 198 days

T R?

(g) We compare the two forces for given area A of the solar panel

po_Tned _ LoA
RE =0 7 4nR2e
GMaA
FGrav = R®2 p
F L
o RP ®

B Farav B 47TCGM®p
a~T.65x1074

At the first sight, this might seem like a negligible effect, but let us look at the change of the orbital

period

(1 - a)Fgray = mwfR

The radius should be the same, because our aim is to minimize the radius.

|GMe(1—
wy = 61(33 @)

T, =2m 7 (1—a) %5
GM;
g % =(1-a) "’ ~1+05x
AT = 0.50T

AT ~ 1.8h

1.0

2.0

1.0

2.0

2.0

2.0

2.0
1.0

3.0

2.0

1.0

2.0

3.0

1.0

3.0
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Figure 1: Transit of a asteroid through the sphere.

Therefore, YES this additional force has an easily detectable effect.

(h) First, we find the angle between entrance and exit points

B a
"= 1—cosé
R — Rcosf =a
056 — R—a _ 0.665 — 1
R 0.665

cos = —0.5046
01 = 2.099rad = 120.2° = 120°14’
05 = 4.185rad = 239.8° = 239°46’
2¢ = 2.086rad = 119.5° = 119°32’

We know the that asteroid will stay inside the sphere for about 79 = 37 days. During this time,
sphere will rotate with an angle

Ay~ 1.17rad

Hence, if the angular distance between holes is 8, the asteroid to go through safely, the following
condition must be satisfied

20 = Ay + 3
B =2¢— Ay
B~ 0.91rad = 52.3°

1.0

1.0
1.0

3.0

2.0

5.0

1.0
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0.5

20 \B

Figure 2: Transit of a asteroid in a polar coordinate system.

(i) By Wien’s law, the most probable wavelength radiated by the sphere would be

b
M=

b
o=

b dHy b dHg
— (14— < — 1+ —
T2<+c><)\0b‘s<T1<+c>

12 Solution: Co-orbital satellites (50 Points)

(a) By Kepler’s third law we have

47?
722 = Trf

27 GM
S T

_ 2
Li = M;Ww;T;

oLy =my/GMr;
(b) When the satellites are opposing positions (i.e. § = ), we have

X1 xro
=R+ —, im=RF =
T1 ) , T2 + 2

2.0

1.5

1.5

2.0
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Thus, using the conservation of angular momentum

Liot = m1y /G (R+%)+m2,/GM(R—%)
miy|GM (R — %) 2,/GM(R+7) 4.0

[y
[ V)

m
X2 T
1+ 1) (1**) =mi (1= g5) +ma 1+ 7)
(14 ) +ma (1= ) = (1 g) +me (14 7
X1 i)
mi— =m
2R T "P2R 2R
mi
L = 2.0
mo {L‘1
(c) Let the centre of mass of the ternary system be denoted by C. The total gravitational force
on satellite mo due to the primary mass M, and the satellite m; may be resolved into a radial
component, parallel to the line between ms and C and a tangential component, perpendicular to the
line between ms and C. Only the tangential component of the force will act to change the angular
momentum of the satellite mso.
The tangential component of the force is given by
GM G
Fy = 2m2 sin (68) — % sin 3 2.0
T35 d
where d = dist(my,mz), § = &mimsC, and 65 = LMmsC. There are two ways to simplify this
expression.
The first way straightforward. By immediately exploiting the fact that mi, me < M and hence
08 — 0, we can say,
d o 1
sinf  sin (8 + 63)
sin 8 = ( ) sin @ 3.0
r1maq
Also Mtm/ _ 2
* sin(6B8)  sin (180 — 0 — 43)
. miry .
s.osin(08) = | ——————= | sinf 4.0
(95) (rg(ml—i-M))

Another way is using the sine and cosine rules for triangles, we have the expressions

1
2

2
rimq 2 2marirs
{(M_le) +ry — TR 0059]

T2 -
sin (180 — ) sin 6
1

. 2 3

7o sin 6 9 rimy 2mariro
fr— - 0
sin vy lr2+<M—|—m1> M+ my o8 ]
Mrq

d _ my+M

sin 7y sin 8

. MTl To . miry 2 2m1r1r2 2 ro.

smﬁfmgsmf) T§+<m1+M fml_’_Mcosf) zgsmﬁ

mir mir > 2marr -4 myr

. . 2 171 17172 17 .
sin (08) = ————sinf |5 + — cosf R ———sinf

08 = o M ? <m1+M> my + M 1 ro(my + M)

In both cases, finally we obtain
n GMms  mym 00 Gmima i 0
= sinf — — sin
= 12 ro(my+ M) 2 d

As, M +mi~ M
o Fy, = Gmymary sin 9(7“53 —d?) 3.0
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Figure 3: Configuration of the satellites and planet. Circle is centered at C(all bodies are rotating
around this point).

The distance between satellites

d ~ 2R sin (Z) 1.0

The tangential component of the gravitational force then becomes

P~ S 9<1_ 7 )
3)

L R2 (
) 2.0
0
2)>
Finally, the torque generated by the gravitational force is then

0
ALy _ g,y Gmam ( COS(?Z) —sm0> 3.0
2

—_

CAD

8 sin

Gmims [ . cos (g
F = 7 (sm@ ~ Zem 2

At R 4 sin?
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(d) We can see that

AL; = m;n/ G‘]\f(?"z + A’I‘l) —mi/GMr;
Apn b
= mi/GMr; (1+ ”) —11
L

=m; GM’I“i (AH)
27‘2'

CAL; 1 \/GWAH
A 2N T A
Ar; 2 r; AL;
At m; | GM At

CAry 2 ro Gmima
At T moVGM R o)

ATQ

At

R —=2mi\/ ——=

h(6)

1.0

Again, since rl &~ r2 &~ R, we can say by symmetry/the conservation of angular momentum

A’/‘l - G
A = 2me\ qph®)
As o A’I“Q AT]

CAL T AL At

As /| G

(e) Since 6 is the angle between the two satellites, we have

Q

20 3 [GM s
At~ 2V R¥ R

(f) Using the expressions in the previous two parts,

As As At
A§ At Ab

| G 2 |R® R

— o+ maho) (1)

(g) The minimum distance of 13 000 km corresponds to a minimum angle of

13000

o ~ 0. — A°FR!
min X TE0000 0.0868 rad = 4°58

3.0

2.0

2.0

3.0

1.0

1.0

2.0
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Then we substitute the given values the into given expression and the result of (b) which gives
m
—2 ~ 3.6
my
and
my 4+ ma ~ 2.5 x 10*¥ kg

Finally
mi ~5.3x 10" kg my~ 1.9 x 10¥kg

13 Solution: Relativistic Beaming (50 Points)
(a) Energy of a photon:
E=hf

while the momentum:

L hf
P 7

where 77 is an unit vector in the direction of the motion of the photon. Substituting this into
energy-momentum transformation law we have:

h h
hfn :7(h+pmv>
c c Cc

Py, = Pyr
pZL = sz
in our case:
Pz, = |pL|cOSOL, Dy, = |pr|sinéyr, Pz, =0
Per = |PRr|cOsOR, Pyr = |PR|sinOR, P =
where
hf
lp| = —
c

Thus,
v
fo=" (fR + E|pR| COS@R)
=7 (fR + UthcosHR>
h ¢
v
S fo=7fr (1 + - cos@R)
c
cos(0r) = Pop _ Pay

ClpLl hfL
hfrv

- hyfr (1 + %COS@R)

h h
c(fRCOSHR+ f§v>
c c

hir (1 + %COSQR>

v

cosblp + —

c.cosfp, = Uic

1+ —cosfgr
c

(b) Now just by plugging in the values of cosine we see that in case (i) (orange arrow) cosf = 1,
So the photon keeps moving in the same direction, in case (ii) (Green arrow) cosfy, = 0, in case (iii)
(Yellow arrow) cosfr, = v/c,(iv) (Grey arrow) cosf = —1.

1.0

2.0

1.0

2.0

2.0

3.0

2.0

2.0
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Lab Frame Rest Frame

A

Y Y

Marking scheme,
0.5 pt for each answer in the rest frame and lab frame.
(c) From the figure we see that:

KP=0OP—-0OKsinf = R—rsinf

where 6 = wt.

X

Let tz, = T be the time at which photon reaches P after leaving K at a time ¢ (in lab frame) then:

c(I'-t)=KP=R—-rsinf~R
R

St=1t, ——
c
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This photon makes angle # = wt to the direction of its motion in lab frame. Now,

v
cosblp + —
cosfy, = vic
1+ —cosfOr
c

v v
cosfr, + — cosfr cosf = cosbp + —

c c

cosOp(1 — Y cosfy) = cosf, — Y
c

c
v
cosby — —
ccoslp = —F—& 2.0
1 — —cosfy,
c

fr=7fr (1 + 260591%)

=~fr (1_|_1C}<COSU9L_1C}))

1 — —cosfy,
c

2
1- Ecos@L—l— E(:050L — (E)
c c c

=vfr
1-— Ecos@L
c
_ Ir B Ir
= v = v
y (1 — cos GL) ~ (1 - cos(wt))
fr

3.0

fL =

AQpr = —A(cosbg) - Ag
cosfOr — cos(Og + AbR)] - A¢
cos g — cos g cos(AfR) + sin g sin(Afg)] - Ad
= [cosOr — cosfr - (1) + sinOr(AOR)] - A
AQp =sinOr(A0R)(Ad)
SCAQL =sinfp(A0L)(Ad) 3.0

sinf; =1 — cos?0;,

v
cosfp + —
=1 C
= v
1+ —cosfOg
c

2 2
1—&—2300501:3—1— (E) COSQQR—COSQHR—QECOSHR— (E)
c c c

=
=

2

p)
(1 + 2 cos GR)
c

<1 _ (Z)2> (1 —cos®Or) sin® O

v 2 v 2
(1—1—700593) 2 (1—}—700593)
c c

~7 9
sinfy, = SIMUR 3.0

¥ (1 + ¢ COSGR)
c
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sin(Afg)

v

¥ (1 + p cos 03)
Abgr

v
y (1 + " cos QR)
AQL o bln@L(AaL)(A¢)
AQR o sin QR(AQR)(Ad))

Sin@R(AQR) 1

)2 sinQR(AGR)

Also, Al ~ sin(Afy) =

A@L ~

~2 (1 + %cos Or
AQgr

SAQp = - (1 B %COS QR)Q

(e) Let N(0.)AQLAT be the number of photons arriving in the vicinity of P within the element
of solid angle A, and time interval T, T + AT (it is important that AT # At where At is the
emission time of the same photons (in lab frame)). These being photons emitted by K into the solid
angle AS) in the time interval tgg, tog + Atgr, so that:

N(OL)AQLAT = NAQrAtor
From an earlier part:

¢TI =ct+ R—rsinfy = ct + R — rsin(wt)
o AT = cAt — r[sin(wt) cos(wAt) + sin(wAt) cos(wt) — sin(wt)]
cAT = cAt — rw cos(wt) At

AT At AT v
Aton = Aton AL =7 (1 — Ecos(wt))
Ator . 1
AT v
~y (1 - cos(wt))
N(tL) _ AQrAtgr
Nr  AQLAT

2 v 2
5 (1—|— 760503)
_ c

- y (1 - %cos(wt))

v
v cosf — —
ey e
€/ 1 — —cosly,
_ c
(lfgcosﬁL)
c
_ gl
= 3
~4 (1 i COSQL)
c
Ngr

N(tr) =

~3 (1 - %COS (tr — R/c))3
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In terms of energy fluxes

fo hfrNg L
T TRZ T unR?
Flty) = hngQ(tL)
F(tL) _ hfLN(tL)
Fy hfrNR
1
= 1
4 (1 — —cos [w <t — R)])
C
Fit,) = L

i (1= 2o (1= 2]

The radiation is strongly beamed in the direction of motion of the source so that a remote observer
in or near the orbital plane of the source sees strongly pulsed radiation.
(f) The amplification (for a given v) is highest when cosf, = 1.

R
F(-0))

1
[0.0975 x 0.05]*

A &~ 1.8 x 107
1

[0.0975 x 1.95]*
Amin ~ 770

F(tr) =

max

Similarly, A, =

2.0

3.0

1.0

1.0

1.0



