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1 Solution: Planck’s units (10 points)

(a) From dimensional analysis

c ≡
[
L1M0T−1

]
1

G ≡
[
L3M−1T−2

]
1

ℏ ≡
[
L2M1T−1

]
1

kB ≡
[
L2M1T−2Θ−1

]
1

Gℏ ≡
[
L5M0T−3

]
Gℏ
c3

≡
[
L2M0T 0

]
∴ Lp =

√
Gℏ
c3

1.5

ℏc
G

≡
[
L0M2T 0

]
∴ mp =

√
ℏc
G

1.5

Lp

c
≡
[
L0M0T 1

]
∴ tp =

√
ℏG
c5

1.0

Tp =
L2
pmp

kBt2p
=

Gℏ
kBc3

× c5

ℏG
×
√

ℏc
G

∴ Tp =

√
ℏc5

Gk2B
1.0

4πϵ0 ≡
[
L−3M−1T 2Q2

]
ℏc ≡

[
L3M1T−2

]
∴ qp =

√
4πϵ0ℏc 1.0

2 Solution: Circumbinary planet (10 points)

Equating gravitational force to centrifugal force, we get:

4π2

T 2
b

ab =
G2M⊙

4a2b
T 2
b

a3b
= 2

4π2

GM⊙

=⇒ ab = 2au. 2.0

The period of planet can be calculated from the 3rd Kepler’s law of motion

T 2
p

a3p
=

4π2

GMΣ
=

4π2

4GM⊙

=⇒ Tp = 44.7 years 2.0

Now,
1

Ts
=

1

Tb
− 1

Tp

∴ Ts =
TbTp

Tp − Tb
= 4.4 years 2.0

One star always covers exactly the half of the planet’s surface. In the best case, the stars are located
at the maximal angular distance from each other. So the fraction of illuminated surface is simply
given by
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n =
1

2
+

θ

2π
=

1

2
+

2arctan
(
ab

ap

)
2π

= 0.53. 4.0

3 Solution: Expanding ring nebula (10 points)

(a) The distance traveled by the gas particles of inner and outer radius can be calculated as follows:

Sout = d⊕(θ
′
out − θout) = 100pc · (8.0′ − 4.0′) = 24× 103 au

Sin = d⊕(θ
′
in − θin) = 100pc · (7.0′ − 3.5′) = 21× 103 au 2.0

∴ vmax =
Sout

t0
= 57.0 km/s

vmin =
Sin

t0
= 50.0 km/s 2.0

(b) At the inner edge, escape velocity from the white dwarf can be maximal (1.44M⊙- Chandrasekhar
limit)

vesc =

√
2G · 1.44M⊙

Sin
≈ 0.35 km/s 2.0

Since vesc ≪ vmin, the no-gravity scenario can be applied. YES 1.0
(c)

ϕ = 8′ − 7.5′ = 0.5′ = 30′′ ≥ 1.22λ

D

∴ D ≥ 1.22λ

ϕ
=

1.22× 5× 10−7 × 206265

30
= 4.19mm 2.0

Hence YES 1.0

4 Solution: Journey Between Galaxies (10 points)

(a) By the Hubble’s Law, the rate of recession is

v(t) =
∆d

∆t
= Hd(t) 1.0

Thus, by referring to the given relation,

d(t) = CeHt

at time t = 0, d(0) = d0 = C. Thus, the distance at a time t:

d(t) = d0e
Ht 1.0

(b) It is easier to solve this problem, if we consider coordinate system that changes its scale in such
a way that distance between earth and our destination does not change (called co-moving frame).
Let v(t) be the velocity in this frame at time t and let l(t) be the total distance traveled until the
moment t.

v(t)d(t) = v0d0

v(t) = v0
d0
d(t)

= v0
d0

d0eHt

v(t) =
∆l

∆t
= −v0e

−Ht 3.0

l(t) = − v0
−H

e−Ht + C

for specific cases:

l(t0) =
v0
H

e−Ht0 + C
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l(0) =
v0
H

+ C

subtracting yields:

l(0) =
v0
H

− v0
H

e−Ht0

thus:

∴ lTotal = d0 = −v0
H

(e−Ht0 − 1) 2.0

Rearranging,

t0 = − 1

H
ln

(
1− Hd0

v0

)
1.0

Thus, condition for reaching the planet at all:

1− Hd0
v0

> 0

v0 > Hd0 = 70 km/s 1.0

(However at this speed it will take eternity to reach it)
For v0 = 1000 km/s we can reach the planet, in:

t0 ≈ 5.3× 1016 s = 17Gyr 1.0

5 Solution: Flaring protoplanetary disk (10 points)

h(r)

r

β

Star

Flaring disk cross-section

Surface layer

h/r dh/dr

tangent

(a) The angle between the light beam and the horizontal plane is

θl ≈ tan θl =
h(r)

r
1.0

Additionally, a tangent is inclined to the disc plane with an angle of

θT ≈ tan θT =
∆h(r)

∆r
2.0

An exterior angle of a triangle is equal to the sum of its two interior opposite angles. Thus,

β = θT − θl =
∆h(r)

∆r
− h(r)

r
1.0

(b) The flux from of stellar radiation at distance r from the star is Es = Ls

4πr2 , where Ls is the
luminosity of the star. However, the irradiation flux is the normal projection of this flux onto the
infinitesimal small surface A of the disk.

Q+ = EsA sinβ ≈ LsAβ

4πr2
1.5

From the Stefan-Boltzmann law, the cooling rate is give by

Q− = AσT 4
D. 0.5
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In the thermal equilibrium

Q+ = Q− =⇒ TD =

(
Lsβ

4πσr2

) 1
4

1.0

(c) The condition for the isothermal layer can be solved by applying

β =
∆h(r)

∆r
− h(r)

r
=

a(r +∆r)b − arb

∆r
− arb

r

= arb

(
(1 + ∆r

r )b − 1

∆r
− 1

r

)
= arb

(
b∆r

r∆r
− 1

r

)
= a(b− 1)rb−1 ∝ r2

=⇒ b = 3 2.0

Finally, one can determine the second constant by

β = a(b− 1)rb−1 = 2ar2

∴ T 4
SL =

(
aLs

2πσ

)
a =

(
2πσT 4

SL

Ls

)
1.0

6 Solution: Photometry of Binary stars (20 Points)

(a) From theWien’s displacement law the temperature of a black body is related to a peak wavelength
of emission by the relation:

λmaxT = b 1.0

TA = 5978K 0.5

TB = 4830K 0.5

(b) Due to the diffraction minimal angular separation between two celestial objects to distinguish
them:

δ = 1.22
λ

D
= 4.44× 10−8 rad = 9.16mas 1.0

Now let us derive the time dependence of the angular separation between two stars as seen from the
earth

As it is seen from the figure, distance s = l cos θ, where l is the distance between stars and θ is
the angle of rotation of the stars about their center of mass after the stars are seen with maximum
angular separation. The angular separation seen by an observer on the earth:

γ =
s

d
=

l

d
cos θ 1.0
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The 38 days, during which objects are seen as a one object the system rotates by the angle β = 2π 38
100 .

1.0
Thus, the corresponding starting angle θ′ at which stars are no longer distinguishable:

θ′ =
π

2
− β

4
=

π

2
− 19π

100
=

31π

100
1.5

and this is the moment, when stars stop to be distinguishable. Thus, corresponding angular sepa-
ration on the sky is δ:

δ =
l

d
cos θ′

From which one obtains

l =
δd

cos θ′
= 1.45 au 1.5

(c) From the Kepler’s 3rd law:

T 2 =
4π2l3

G(MA +MB)

MA +MB =
4π2l3

GT 2

= 40.7M⊙ 2.0

(d) From given data for case 1:

(U − V )1 = (U −B)1 + (B − V )1 = 0.3

U1 = U01 + aUd = 6.51

V1 = U1 − (U − V )1 = 6.21

mBol1 = V1 +BC1 = 6.31 1.5

Similarly for second configuration:

(U − V )2 = (U −B)2 + (B − V )2 = 0.37

U2 = U02 + aUd = 6.98

V2 = U2 − (U − V )2 = 6.61

mBol2 = V2 +BC2 = 6.79 1.0
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The difference in bolometric magnitudes:

mbol2 −mbol1 = −2.5 log

(
L2

L1

)
= −2.5 log

(
π(R2

A −R2
B)σT

4
A + πR2

BσT
4
B

πR2
AσT

4
A + πR2

BσT
4
B

)
1.5

∴ 6.79− 6.31 = −2.5 log

(
(R2

A −R2
B)T

4
A +R2

BT
4
B

R2
AT

4
A +R2

BT
4
B

)
= −2.5 log

(
(R2

A/R
2
B − 1)T 4

A + T 4
B

T 4
AR

2
A/R

2
B + T 4

B

)

∴ 0.48 = −2.5 log


(

R2
A

R2
B
− 1
)
+

T 4
B

T 4
A

T 4
B

T 4
A
+

R2
A

R2
B

 1.0

∴ 10
−0.48
2.5 =

R2
A

R2
B
− 1 +

T 4
B

T 4
A

T 4
B

T 4
A
+

R2
A

R2
B

= 10−0.19 = 0.65 1.0

R2
A

R2
B

− 1 +
T 4
B

T 4
A

= 0.65
T 4
B

T 4
A

+ 0.65
R2

A

R2
B

0.35
R2

A

R2
B

= 1− 0.35
T 4
B

T 4
A

= 1− 0.35× 0.482 = 0.83

∴
RA

RB
=

√
0.83

0.35
= 1.54 1.0

MA

MB
=

ρAR
3
A

ρBR3
B

= 1.543 · 0.7 = 2.56 1.0

But, MA +MB = 40.7M⊙ 1.0

∴ MB =
40.7M⊙

3.56
= 11.4M⊙ 1.0

MB = 29.3M⊙

7 Solution: Georgia to Georgia (20 points)

In the diagram, N is the northernmost point of the path
>
AB. Triangle APB, triangle APN and

triangle BPN are all spherical triangles. We shall use the convention that North and West are
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positive, and South and East are negative. We notice,

>
PN = −δF = 30°4′
>
PA = 90° − ϕA = 48°17′
>
PB = 90° − ϕB

∢PNA = ∢PNB = 90°
∢BPA = λB − λA 5.0

x =
>
AB = vt = 4375× 2

17

60
= 9990 km

∴ x =
9900

R⊕
= 1.5663 rad

= 89.74° = 89°44′ 2.0

In △APN , using sine rule,

sin∢A

sin
>
PN

=
sin∢N

sin
>
PA

∴ sin∢A =
sin 90° sin(30°4′)

cosϕA
=

sin(30°4′)
cos(41°43′)

= 0.67119

∴ ∢A = 0.7358 rad = 42.16° = 42°10′ 3.0

(Recognise that to have a northern point on the path, it must be the acute solution)

In △PBA, using cosine rule,

cos
>
PB = cos

>
PAcos

>
AB+ sin

>
PAsin

>
ABcos∢A

sinϕB = sinϕA cosx+ cosϕA sinx cosA

= sin(41°43′) cos(89°44′) + cos(41°43′) sin(89°44′) cos(42°10′)
sinϕB = 0.5563

∴ ϕB = 0.5900 rad = 33.80° = 33°48′ 4.0

(Only one solution in the valid values of latitude)

Again using cosine rule,

cos
>
AB = cos

>
PAcos

>
PB + sin

>
PAsin

>
PBcos∢P

∴ cos∢P =
cosx− sinϕA sinϕB

cosϕA cosϕB

=
cos(89°44′)− sin(41°43′) sin(33°48′)

cos(41°43′) cos(33°48′)
cos∢P = −0.5891

∴ ∢P = 2.201 rad = 126.13° = 126°8′

λB = ∢P + λA = 126°8′ − 41°48′

λB = 1.472 rad = 84.33° = 84°20′ 5.0

(The other solution of λB − λA = −126.13° gives λB = −167.93° which is clearly not valid)

Therefore, the coordinates of Atlanta are

(33°48′N,84°20′W) 1.0

Alternative method to find L2

Using the spherical sine rule in triangle PBA,

sinA

sin (90◦ − ϕ2)
=

sin (L2 − L1)

sinx
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∴ sin (L2 − L1) =
sinx sinA

cosϕ2

∴ sin (L2 − L1) =
sin (89◦51′) sin (42◦10′)

cos (33◦43′)
= 0.80689

∴ L2 − L1 = 126.21◦ (= 126◦12′ = 2.20rad)

∴ L2 = 126◦12′ + L1 = 126◦12′ + (−41◦48′) = 84.41◦ (= 84◦24′ = 1.47rad)

(The other solution of L2 − L1 = 53.79◦ gives L2 = 11.99◦ which is clearly not valid)

Accept all other valid solutions (such as the four parts rule or using Napier’s rules) that give ϕ2 =
33.71◦ and L2 = 84.41◦. Students may do both methods for calculating L2 to confirm which solution
is common to both as a quicker check than trying to do the reverse calculation with a given pair of
co-ordinates.

8 Solution: Saturn’s Rings (20 Points)

(a) Consider small surface element (∆S) of the disk. The gravitational field (∆E) generated by this
surface element at at a point O located at a distance a from ∆S (see the figure below):

∆E = G
σ∆S

a2

where σ is a surface density of the mass.

where α is the angle between surface normal and the vector r⃗ and ∆Ω is infinitesimal solid angle
corresponding to the area ∆S.
For a ring, the surface density will be given by σ = M/π(R2 − r2).
As the horizontal component will get cancelled due to symmetry considerations, we only consider
the normal component:

∆E⊥ = ∆Ecos(α) =
Gσ

a2
∆Scos(α) =

Gσ

a2
∆S⊥ = Gσ∆Ω 5.0

By Summation, we can obtain total normal field of the surface:

E⊥ = GσΩ 1.0

here Ω is the total solid angle subtended by the disk. In our case, when we observe disk from the
point of view of the test particle:

Ω = 2π (1− cos θout)− 2π (1− cos θin)

= 2π

(
1− x√

x2 +R2

)
− 2π

(
1− x√

x2 + r2

)
Ω = 2πx

(
1√

x2 + r2
− 1√

x2 +R2

)
3.0

∴ F⊥ = GσΩm

F⊥ =
2GMmx

R2 − r2

(
1√

x2 + r2
− 1√

x2 +R2

)
1.0
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(b) In small displacement approximation:

F⊥ ≈ 2GMmx

R2 − r2

(
1

r
− 1

R

)
=

(
2GMm

Rr(R+ r)

)
x = kx 3.0

when the distance between the disk and the point mass is x, the distance of the center of mass of
the system from the center of the disk will be:

x1 =
mx

m+M
2.5

If we choose the center of mass of the system as an origin of our coordinate system, then equation
of motion of the disk will have a form:

Ma1 = −kx

Ma1 + k
m+M

m
x1 = 0 2.5

For this simple harmonic oscillator, the period of small oscillations will be:

T = 2π

√
Rr(R+ r)

2G(M +m)
2.0

9 Solution: Solar Retrograde Motion on Mercury (20 points)

From Kepler’s 3rd Law, T 2 = a3 in units of Earth years and au respectively.

∴ TMercury =

√
(0.387)

3
= 0.240 75 yr = 87.934 days 2.0

We know that ωorb = v/r so will vary throughout the orbit (since r varies within an ellipse) whilst
ωrot is constant.

ωrot =
2π

Trot
=

2π
2
3 × 87.934× 86400

= 1.24× 10−6 rad/s 2.0

For retrograde motion, we need ωorb ≥ ωrot.
Using the vis-viva equation for the critical value of r for when ωrot = ωorb,

ω2
orb =

v2

r2
=

GM⊙

r2

(
2

r
− 1

a

)
= ω2

rot

2GM⊙

r3
− GM⊙

ar2
= ω2

rot

∴
ω2
rot

GM⊙
r3 +

1

a
r − 2 = 0

(1.160× 10−32)r3 + (1.725× 10−11)r − 2 = 0 (if r is in meters)

38.99r3 + 2.584r − 2 = 0 (if r is in au) 4.0

Solving the cubic equation (by any valid method) gives only one non-imaginary root
One possible way would be to use iterations for this polynomial f(r), using perihelion distance as
the starting guess.

r f(r)
0.3073 -0.07482
0.3100 -0.03747
0.3120 -0.00967
0.3140 0.01841
0.3130 0.00433
0.3127 0.00012

∴ r = 0.3127 au = 4.684× 1010 m 4.0
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From knowledge of ellipses, if E is the eccentric anomaly

r = a(1− e cosE)

∴ E = cos−1

[
1

e

(
1− r

a

)]
= cos−1

[
1

0.206

(
1− 0.3127

0.387

)]
E = 0.3706 rad = 21.23° = 21°14′ 3.0

Using Kepler’s Equation we can find the mean anomaly, M

M = E − e sinE = 0.3706− 0.206× sin 0.3706

= 0.2960 rad = 16.96° = 16°58′ 2.0

This is relative to the perihelion, so symmetry demands that the total time the sun is in retrograde
corresponds to

∆M = 2M

∴ T⊙,retro = TMercury
∆M

2π
= 87.934× 2× 0.296

2π

T⊙,retro = 8.28 days 3.0

[Accept alternative methods making use of the true anomaly e.g. with the relation cosE = e+cos ν
1+e cos ν .

]

10 Solution: Accretion (20 Points)

(a) Consider a particle at a distance r from the center of the compact object. In case of maximal
luminosity, the gravitational force must be balanced by the radiation pressure.

FG = G
mHM

r2
0.5

FR =
σeLE

4πcr2
0.5

But, FG = FR 1.0

∴ LE =
4πGmHMc

σe
1.0

(b) The lower bound of its mass given by:

σe =
8π

3

(
e2

4πε0mec2

)2

≈ 6.65× 10−29 m2 1.5

M =
σeL⊙

4πGmHc

= 6.04× 1025 kg

= 3.04× 10−5M⊙ 2.5

(c) Gravitational energy of atoms of total mass ∆m:

∆E =
GM∆m

R

Lacc =
∆E

∆t

∴ Lacc =
GM

R

∆m

∆t
=

GM

R
Ṁ 2.0

(d) For maximum Ṁ :

Lacc = LE

GM

R
Ṁ =

4πGmHMc

σe

Ṁ =

(
4πmHc

σe

)
R 2.0
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(e) For given value of R∗:

Ṁ =

(
4πmHc

σe

)
R∗

Ṁ = 1.14× 1021 kg/s

= 3.59× 1028 kg/yr

Ṁ = 0.018M⊙/yr 2.0

(f) The total angular momentum and total mass must be conserved.

L = M1r
2
1Ω+M2r

2
2Ω 1.0

Let MT = M1 +M2

and a = r1 + r2

r1 =
M2a

MT
and r2 =

M1a

MT
1.0

∴ L =

[
M1

(
M2a

MT

)2

+M2

(
M1a

MT

)2
]
Ω

=
(
M1M

2
2 +M2M

2
1

) a2Ω
M2

T

∴ L =
a2ΩM1M2

MT
==

a2ΩM1(MT −M1)

MT
1.0

∴ a =

(√
LMT

Ω

)
M−0.5

1 (MT −M1)
−0.5

a = KM−0.5
1 (MT −M1)

−0.5 1.0

Now let us say mass of the compact object increases by small fraction ∆M1. Let the corresponding
increases in the separation be ∆a.

a+∆a = K(M1 +∆M1)
−0.5(MT −M1 −∆M1)

−0.5

= KM−0.5
1 (MT −M1)

−0.5

(
1 +

∆M1

M1

)−0.5(
1− ∆M1

MT −M1

)−0.5

a+∆a = a

(
1 +

∆M1

M1

)−0.5(
1− ∆M1

M2

)−0.5

1.0

∴ 1 +
∆a

a
≈
(
1− ∆M1

2M1

)(
1 +

∆M1

2M2

)
≈ 1− ∆M1

2M1
+

∆M1

2M2

∴
∆a

a
=

∆M1

2

(
M1 −M2

M1M2

)
1.0

Thus, ∆a is positive (separation increases) when M1 > M2 and the separation decreased when
M1 < M2. 1.0

11 Solution: Dyson Sphere (50 Points)

(a) Heat absorbed must be fully emitted to maintain the thermal equilibrium

kL⊙ = 4πR2ϵσT 4
eq 2.0

∴ Teq =
4

√
kL⊙

4πR2ϵσ
1.0

(b) In this part, we try minimize the radius at the expanse of reaching the highest operational
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temperature for panels. Again

kL⊙ = 4πR2ϵσT 4
max

R =

√
kL⊙

4πϵσT 4
max

1.0

≈ 1× 1011 m = 0.665 au 2.0

Clearly, this distance is approximately 1.5 times smaller than Earth-Sun separation. Hence, Earth
will stay OUTside the sphere. 1.0
(c) Power transmitted into usable energy

P = ηL⊙

P = 7.65× 1025 W 2.0

(d) Energy harnessed in 1 second will be enough for

τ =
7.65× 1025 W × 1 s

17× 1012 W
= 4.5× 1012 s ≈ 143 000 yr 2.0

(e) New equilibrium temperature may be found as

kL⊙
πR2

⊕
4πa2⊕

= 4πR2
⊕σT

4
new 2.0

Tnew = 4

√
kL⊙

16πσa2⊕

Tnew ≈ 206K 2.0

∆T = 288− 206 = 82K 1.0

(f) By Kepler’s Third Law

T 2 =
4π2

GM⊙
R3

∴ T = (0.665)1.5yr

T ≈ 0.542 yr = 198 days 3.0

(g) We compare the two forces for given area A of the solar panel

FRP =
IincA

c
=

L⊙A

4πR2c
2.0

FGrav =
GM⊙Aρ

R2
1.0

α =
FRP

FGrav
=

L⊙

4πcGM⊙ρ

α ≈ 7.65× 10−4 2.0

At the first sight, this might seem like a negligible effect, but let us look at the change of the orbital
period

(1− α)FGrav = mω2
1R 3.0

The radius should be the same, because our aim is to minimize the radius.

ω1 =

√
GM⊙(1− α)

R3

T1 = 2π

√
R3

GM⊙
(1− α)−0.5 1.0

∴
T1

T
= (1− α)−0.5 ≈ 1 + 0.5α

∆T = 0.5αT

∆T ≈ 1.8 h 3.0
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Figure 1: Transit of a asteroid through the sphere.

Therefore, YES this additional force has an easily detectable effect. 1.0

(h) First, we find the angle between entrance and exit points

r =
a

1− cos θ

R−R cos θ = a

cos θ =
R− a

R
=

0.665− 1

0.665
1.0

cos θ = −0.5046 1.0

θ1 = 2.099 rad = 120.2° = 120°14′

θ2 = 4.185 rad = 239.8° = 239°46′

2ϕ = 2.086 rad = 119.5° = 119°32′ 3.0

We know the that asteroid will stay inside the sphere for about τ0 = 37 days. During this time,
sphere will rotate with an angle

∆γ = ωτ0 =
2πτ0
T

∆γ ≈ 1.17 rad 2.0

Hence, if the angular distance between holes is β, the asteroid to go through safely, the following
condition must be satisfied

2ϕ = ∆γ + β 5.0

∴ β = 2ϕ−∆γ

β ≈ 0.91 rad = 52.3° 1.0

.
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Figure 2: Transit of a asteroid in a polar coordinate system.

(i) By Wien’s law, the most probable wavelength radiated by the sphere would be

λ1 =
b

T1

λ2 =
b

T2
2.0

λ′
1 ≈ λ1

(
1 +

dH0

c

)
λ′
2 ≈ λ2

(
1 +

dH0

c

)
2.0

b

T2

(
1 +

dH0

c

)
< λobs <

b

T1

(
1 +

dH0

c

)
1.0

12 Solution: Co-orbital satellites (50 Points)

(a) By Kepler’s third law we have

T 2
i =

4π2

GM
r3i

ωi =
2π

Ti
=

√
GM

r3i
1.5

Li = miωir
2
i

∴ Li = mi

√
GMri 1.5

(b) When the satellites are opposing positions (i.e. θ = π), we have

r1 = R± x1

2
, r2 = R∓ x2

2
2.0
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Thus, using the conservation of angular momentum

Ltot = m1

√
GM

(
R+

x1

2

)
+m2

√
GM

(
R− x2

2

)
= m1

√
GM

(
R− x1

2

)
+m2

√
GM

(
R+

x2

2

)
4.0

∴ m1

(
1 +

x1

4R

)
+m2

(
1− x2

4R

)
= m1

(
1− x1

4R

)
+m2

(
1 +

x2

4R

)
m1

x1

2R
= m2

x2

2R

∴
m1

m2
=

x2

x1
2.0

(c) Let the centre of mass of the ternary system be denoted by C. The total gravitational force
on satellite m2 due to the primary mass M , and the satellite m1 may be resolved into a radial
component, parallel to the line between m2 and C and a tangential component, perpendicular to the
line between m2 and C. Only the tangential component of the force will act to change the angular
momentum of the satellite m2.
The tangential component of the force is given by

F2⊥ =
GMm2

r22
sin (δβ)− Gm1m2

d2
sinβ 2.0

where d = dist(m1,m2), β = ∡m1m2C, and δβ = ∡Mm2C. There are two ways to simplify this
expression.
The first way straightforward. By immediately exploiting the fact that m1, m2 ≪ M and hence
δβ → 0, we can say,

d

sin θ
=

r1
sin (β + δβ)

sinβ =
(r1
d

)
sin θ 3.0

Also,

(
r1m1

M +m1

)
sin (δβ)

=
r2

sin (180− θ − δβ)

∴ sin (δβ) =

(
m1r1

r2(m1 +M)

)
sin θ 4.0

Another way is using the sine and cosine rules for triangles, we have the expressions

r2
sin (180− γ)

=

[(
r1m1

M+m1

)2
+ r22 − 2m1r1r2

M+m1
cos θ

] 1
2

sin θ

r2 sin θ

sin γ
=

[
r22 +

(
r1m1

M +m1

)2

− 2m1r1r2
M +m1

cos θ

] 1
2

d

sin γ
=

Mr1
m1+M

sinβ

sinβ =
Mr1

m1 +M

r2
d
sin θ

[
r22 +

(
m1r1

m1 +M

)2

− 2m1r1r2
m1 +M

cos θ

]− 1
2

≈ r1
d
sin θ

sin (δβ) =
m1r1

m1 +M
sin θ

[
r22 +

(
m1r1

m1 +M

)2

− 2m1r1r2
m1 +M

cos θ

]− 1
2

≈ m1r1
r2(m1 +M)

sin θ

In both cases, finally we obtain

F2⊥ =
GMm2

r22

m1r1
r2(m1 +M)

sin θ − Gm1m2

d2
r1
d
sin θ

As, M +m1 ≈ M

∴ F2⊥ = Gm1m2r1 sin θ(r
−3
2 − d−3) 3.0
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Figure 3: Configuration of the satellites and planet. Circle is centered at C(all bodies are rotating
around this point).

The distance between satellites

d ≈ 2R sin

(
θ

2

)
1.0

The tangential component of the gravitational force then becomes

F2⊥ ≈ Gm1m2

R2
sin θ

(
1− 1

8 sin3
(
θ
2

))

F2⊥ =
Gm1m2

R2

(
sin θ −

cos
(
θ
2

)
4 sin2

(
θ
2

)) 2.0

Finally, the torque generated by the gravitational force is then

∆L2

∆t
= F2⊥r ≈ −Gm1m2

R

(
cos
(
θ
2

)
4 sin2

(
θ
2

) − sin θ 3.0

)
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(d) We can see that

∆Li = mi

√
GM(ri +∆ri)−mi

√
GMri

= mi

√
GMri

[(
1 +

∆ri
ri

) 1
2

− 1

]

= mi

√
GMri

(
∆ri
2ri

)
∴

∆Li

∆t
=

1

2
mi

√
GM

ri

∆ri
∆t

2.0

∆ri
∆t

=
2

mi

√
ri

GM

∆Li

∆t

∴
∆r2
∆t

≈ − 2

m2

√
r2
GM

Gm1m2

R
h(θ)

∆r2
∆t

≈ −2m1

√
G

MR
h(θ) 1.0

Again, since r1 ≈ r2 ≈ R, we can say by symmetry/the conservation of angular momentum

∆r1
∆t

≈ 2m2

√
G

MR
h(θ) 3.0

∴
∆s

∆t
=

∆r2
∆t

− ∆r1
∆t

∆s

∆t
= −2

√
G

MR
(m1 +m2)h(θ) 2.0

(e) Since θ is the angle between the two satellites, we have

∆θ

∆t
= ω2 − ω1 =

√
GM

r32
−

√
GM

r31
2.0

=

√
GM

R3

[(r2
R

)− 3
2 −

(r1
R

)− 3
2

]
=

√
GM

R3

[(
1 +

r2 −R

R

)− 3
2

−
(
1 +

r1 −R

R

)− 3
2

]

=

√
GM

R3

[
1− 3

2

(r2 −R)

R
− 1 +

3

2

(r1 −R)

R

]
≈
√

GM

R3

[
3

2

r1 − r2
R

]
∆θ

∆t
≈ −3

2

√
GM

R3

s

R
3.0

(f) Using the expressions in the previous two parts,

∆s

∆θ
=

∆s

∆t
· ∆t

∆θ
1.0

= 2

√
G

MR
(m1 +m2)h(θ) ·

2

3

√
R3

GM

R

s

=
4

3

R2

M
(m1 +m2)h(θ)

(
1

s

)
∴ s∆s =

4R2

3

(m1 +m2)

M
h(θ)∆θ 1.0

(g) The minimum distance of 13 000 km corresponds to a minimum angle of

θmin ≈ 13000

150000
≈ 0.0868 rad = 4°58′ 2.0
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Then we substitute the given values the into given expression and the result of (b) which gives

m2

m1
≈ 3.6 1.0

and
m1 +m2 ≈ 2.5× 1018 kg 2.0

Finally
m1 ≈ 5.3× 1017 kg m2 ≈ 1.9× 1018 kg 1.0

13 Solution: Relativistic Beaming (50 Points)

(a) Energy of a photon:
E = hf

while the momentum:

p⃗ =
hf

c
n⃗ 2.0

where n⃗ is an unit vector in the direction of the motion of the photon. Substituting this into
energy-momentum transformation law we have:

hfL
c

= γ

(
hfR
c

+ pxR

v

c

)
pxL

= γ

(
pxR

+
hfRv

c2

)
pyL

= pyR

pzL = pzR 2.0

in our case:

pxL
= |pL| cos θL, pyL

= |pL| sin θL, pzL = 0

pxR
= |pR| cos θR, pyR

= |pR| sin θR, pzR = 0 3.0

where

|p| = hf

c

Thus,

fL = γ
(
fR +

v

h
|pR| cos θR

)
= γ

(
fR +

v

h

hfR
c

cos θR

)
∴ fL = γfR

(
1 +

v

c
cos θR

)
2.0

cos(θL) =
pxL

|pL|
=

cpxL

hfL

=

cγ

(
pxR

+
hfRv

c2

)
hγfR

(
1 +

v

c
cos θR

)

=

c

(
hfR
c

cos θR +
hfRv

c2

)
hfR

(
1 +

v

c
cos θR

)
∴ cos θL =

cos θR +
v

c

1 +
v

c
cos θR

2.0

(b) Now just by plugging in the values of cosine we see that in case (i) (orange arrow) cos θL = 1,
So the photon keeps moving in the same direction, in case (ii) (Green arrow) cos θL = 0, in case (iii)
(Yellow arrow) cos θL = v/c,(iv) (Grey arrow) cos θL = −1.
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Marking scheme,
0.5 pt for each answer in the rest frame and lab frame.
(c) From the figure we see that:

KP = OP −OK sin θ = R− r sin θ 1.0

where θ = ωt.

Let tL = T be the time at which photon reaches P after leaving K at a time t (in lab frame) then:

c(T − t) = KP = R− r sin θ ≈ R

∴ t = tL − R

c
1.0
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This photon makes angle θ = ωt to the direction of its motion in lab frame. Now,

cos θL =
cos θR +

v

c

1 +
v

c
cos θR

cos θL +
v

c
cos θR cos θL = cos θR +

v

c

cos θR(1−
v

c
cos θL) = cos θL − v

c

∴ cos θR =
cos θL − v

c

1− v

c
cos θL

2.0

fL = γfR

(
1 +

v

c
cos θR

)
= γfR

1 +

v

c

(
cos θL − v

c

)
1− v

c
cos θL



= γfR

1− v

c
cos θL +

v

c
cos θL −

(v
c

)2
1− v

c
cos θL


=

fR

γ
(
1− v

c
cos θL

) =
fR

γ
(
1− v

c
cos(ωt)

)
∴ fL =

fR

γ

(
1− v

c
cos

[
ω

(
tL − R

c

)]) 3.0

(d)

∆ΩR = −∆(cos θR) ·∆ϕ

= [cos θR − cos(θR +∆θR)] ·∆ϕ

= [cos θR − cos θR cos(∆θR) + sin θR sin(∆θR)] ·∆ϕ

= [cos θR − cos θR · (1) + sin θR(∆θR)] ·∆ϕ

∆ΩR = sin θR(∆θR)(∆ϕ)

∴ ∆ΩL = sin θL(∆θL)(∆ϕ) 3.0

sin2 θL = 1− cos2 θL

= 1−

 cos θR +
v

c

1 +
v

c
cos θR

2

=
1 + 2

v

c
cos θR +

(v
c

)2
cos2 θR − cos2 θR − 2

v

c
cos θR −

(v
c

)2
(
1 +

v

c
cos θR

)2

=

(
1−

(v
c

)2)(
1− cos2 θR

)
(
1 +

v

c
cos θR

)2 =
sin2 θR

γ2
(
1 +

v

c
cos θR

)2
sin θL =

sin θR

γ
(
1 +

v

c
cos θR

) 3.0
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Also, ∆θL ≈ sin(∆θL) =
sin(∆θR)

γ
(
1 +

v

c
cos θR

)
∆θL ≈ ∆θR

γ
(
1 +

v

c
cos θR

) 2.0

∆ΩL

∆ΩR
=

sin θL(∆θL)(∆ϕ)

sin θR(∆θR)(∆ϕ)

=
sin θR(∆θR)

γ2
(
1 +

v

c
cos θR

)2 · 1

sin θR(∆θR)

∴ ∆ΩL =
∆ΩR

γ2
(
1 +

v

c
cos θR

)2 2.0

(e) Let N(θL)∆ΩL∆T be the number of photons arriving in the vicinity of P within the element
of solid angle ∆ΩL and time interval T, T + ∆T (it is important that ∆T ̸= ∆t where ∆t is the
emission time of the same photons (in lab frame)). These being photons emitted by K into the solid
angle ∆Ω in the time interval t0R, t0R +∆t0R, so that:

N(θL)∆ΩL∆T = N∆ΩR∆t0R 2.0

From an earlier part:

cT = ct+R− r sin θL = ct+R− r sin(ωt)

∴ c∆T = c∆t− r[sin(ωt) cos(ω∆t) + sin(ω∆t) cos(ωt)− sin(ωt)]

c∆T = c∆t− rω cos(ωt)∆t 2.0

∆T

∆t0R
=

∆t

∆t0R

∆T

∆t
= γ

(
1− v

c
cos(ωt)

)
∆t0R
∆T

=
1

γ
(
1− v

c
cos(ωt)

) 3.0

N(tL)

NR
=

∆ΩR∆t0R
∆ΩL∆T

=
γ2
(
1 +

v

c
cos θR

)2
γ
(
1− v

c
cos(ωt)

)

=

γ

1 +
(v
c

) cos θL − v

c

1− v

c
cos θL

2

(
1− v

c
cos θL

)
=

γ

γ4
(
1− v

c
cos θL

)3
N(tL) =

NR

γ3
(
1− v

c
cos (tL −R/c)

)3 3.0
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In terms of energy fluxes

F0 =
hfRNR

R2
=

L

4πR2

F (tL) =
hfLN(tL)

R2
2.0

F (tL)

F0
=

hfLN(tL)

hfRNR

=
1

γ4

(
1− v

c
cos

[
ω

(
t− R

c

)])4

F (tL) =
L

4πR2γ4

(
1− v

c
cos

[
ω

(
t− R

c

)])4 3.0

The radiation is strongly beamed in the direction of motion of the source so that a remote observer
in or near the orbital plane of the source sees strongly pulsed radiation.
(f) The amplification (for a given v) is highest when cos θL = 1. 1.0

F (tL) =
F0[

γ
(
1− v

c

)]4
Amax =

1

[0.0975× 0.05]
4

Amax ≈ 1.8× 109 1.0

Similarly, Amin =
1

[0.0975× 1.95]
4

Amin ≈ 770 1.0


